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Abstract

Models of vegetation dynamics that are designed for application at spatial scales larger
than individual forest gaps suffer from several limitations. Typically, either a population
average approximation is used that results in unrealistic tree allometry and forest stand
structure, or models have a high computational demand because they need to simulate5

both a series of age-based cohorts and a number of replicate patches to account for
stochastic gap-scale disturbances. The detail required by the latter method increases
the number of calculations by two to three orders of magnitude compared to the less
realistic population average approach. In an effort to increase the efficiency of dynamic
vegetation models without sacrificing realism, and to explore patterns of spatial scal-10

ing in forests, we developed a new method for simulating stand-replacing disturbances
that is both accurate and 10-50x faster than approaches that use replicate patches. The
GAPPARD (approximating GAP model results with a Probabilistic Approach to account
for stand Replacing Disturbances) method works by postprocessing the output of de-
terministic, undisturbed simulations of a cohort-based vegetation model by deriving the15

distribution of patch ages at any point in time on the basis of a disturbance probability.
With this distribution, the expected value of any output variable can be calculated from
the output values of the deterministic undisturbed run at the time corresponding to the
patch age. To account for temporal changes in model forcing, e.g., as a result of climate
change, GAPPARD performs a series of deterministic simulations and interpolates be-20

tween the results in the postprocessing step. We integrated the GAPPARD method
in the forest models LPJ-GUESS and TreeM-LPJ, and evaluated these in a series of
simulations along an altitudinal transect of an inner-alpine valley. With GAPPARD ap-
plied to LPJ-GUESS results were insignificantly different from the output of the original
model LPJ-GUESS using 100 replicate patches, but simulation time was reduced by25

approximately the factor 10. Our new method is therefore highly suited rapidly approx-
imating LPJ-GUESS results, and provides the opportunity for future studies over large
spatial domains, allows easier parameterization of tree species, faster identification of
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areas of interesting simulation results, and comparisons with large-scale datasets and
forest models.

1 Introduction

Forests are an important part of the Earth System, at present covering roughly 30 %
of the Earth’s land surface and responsible for about half of the total terrestrial carbon5

(Fischlin and Midgley, 2007). Ongoing pressures on forest ecosystems including cli-
mate and land use change affect forest structure, composition and carbon storage, and
changes in forests may in turn feedback to affect climate and ecosystem services (Fis-
chlin and Midgley, 2007; Purves and Pacala, 2008). In order to assess the importance
of forests in the Earth System and understand their sensitivity to ongoing environmen-10

tal change, it is essential to have forest models that can be applied at continental- to
global-scales. Large-scale forest models that can be used to address these questions
are complex, as they must include a dynamic representation of forest demography,
particularly with respect to forest disturbances and structure-related competition (Quil-
let et al., 2010; Bonan, 2008). The most widely used tools for assessing the role of15

plant cover in the Earth System are Dynamic Global Vegetation Models (DGVMs). All
DGVMs simulate forest growth and include a representation of plant physiology and
vegetation dynamics (Prentice et al., 2007), but the first generation DGVMs did not
explicitly simulate forest structure, and showed important limitations in their ability to
model competition and disturbances (Quillet et al., 2010). Recently, a second gener-20

ation of DGVMs has been developed that explicitly account for forest structural char-
acteristics, improve the modeling of competition and small-scale disturbances, and,
thus, lead to more realistic simulations of forest growth (e.g., Hickler et al., 2008; Sato
et al., 2007; Fisher et al., 2010). These new DGVMs, also called “hybrid” models, have
substantial advantages over the original DGVMs in terms of realism, but this typically25

comes at the cost of computational demand, which puts limits on the spatial domain or
maximum resolution that can be simulated in a reasonable amount of time.
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One commonly applied but computationally time-consuming way of including dy-
namic forest structure into a DGVM is to apply the “gap model” approach (Shugart,
1984), in which forest dynamics are simulated on small patches that roughly represent
the area of influence of one mature tree. Because establishment, individual distur-
bance and mortality occur stochastically across a forest stand, a gap model simulates5

a number of replicate patches with the same external forcing (climate, soils) and aggre-
gates these when providing gridcell-level output. An example of one hybrid DGVM that
applies this method is LPJ-GUESS (Smith et al., 2001; Hickler et al., 2004), which com-
bines the plant physiological representations of the 1st generation LPJ-DGVM (Sitch
et al., 2003) with the GUESS model of forest demographics (Smith et al., 2001). LPJ-10

GUESS has been successfully applied to a wide number of studies over recent years,
but because it is computationally expensive, global runs at high spatial resolution, e.g.,
on the 0.5◦ grid commonly used by the LPJ-DGVM (Friedlingstein et al., 2006), are
currently impractical without supercomputers.

Hybrid DGVMs are computationally expensive for two main reasons. They need15

to (1) simulate plant physiology in 5–50 age-based cohorts that represent the height
structure of individual patches, and (2) simulate at least 100 replicate patches to ad-
equately represent stochastic disturbance, establishment and mortality at the gridcell
level. Combined, these requirements increase the computational demand of a hybrid
DGVM by two to three orders of magnitude as compared to a 1st generation model.20

To address the first problem regarding the need to represent a large number of repli-
cate patches in a hybrid DGVM, Scherstjanoi et al. (2013) introduced TreeM-LPJ that,
instead of cohorts, represents forest structure in a series of height classes. Thereby,
TreeM-LPJ approximated demographic stochasticity and successfully represented for-
est biomass while substantially reducing computing time compared to the standard25

LPJ-GUESS. However, simulations with TreeM-LPJ cannot include the effect of patch-
destroying small-scale disturbances, which can have a significant impact on model
results (Hickler et al., 2004; Gritti et al., 2006). Considering this impact and the large
number of replicate patches required, we identified a need to develop a new approach
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to simulating small-scale disturbances that was both efficient and accurate. Further-
more, we recognized that exploring spatial scaling in forests could lead to the elucida-
tion of near-universal relationships between forest demographics and disturbance at
larger scales, a fundamentally interesting ecological problem.

In this paper we describe a new approach to simulating forest dynamics that dis-5

penses with the need to simulate replicate patches in a hybrid DGVM and is both as
accurate as and substantially more computationally efficient than traditional models.
We compare our new approach to standard LPJ-GUESS and TreeM-LPJ in a series of
experiments along an environmental gradient in the Swiss Alps and demonstrate the
quality of the new method. We then suggest potential applications for this new, efficient10

model for addressing large-scale problems on the role of forests in the Earth System.

2 Material and methods

2.1 Base models

LPJ-GUESS is a process-oriented hybrid model to describe vegetation dynamics
(Smith et al., 2001; Hickler et al., 2004). It shares characteristics of the dynamic global15

vegetation model (DGVM) LPJ-DGVM (Sitch et al., 2003) and the individual (cohort)
based gap model GUESS (Smith et al., 2001). Plant physiological and biogeochemical
processes are based on the formulations in LPJ-DGVM. Plants are either simulated as
tree species (Koca et al., 2006; Wolf et al., 2008; Hickler et al., 2012) or aggregated to
plant functional types (PFTs).20

TreeM-LPJ is a process-oriented height class based forest model (Scherstjanoi et al.,
2013). It combines plant physiological functions from LPJ-GUESS with the height class
structure from the forest landscape model TreeMig (Lischke et al., 2006b). Thereby, the
vertical forest structure represents LPJ-GUESS individuals of different height. TreeM-
LPJ is fully deterministic and therefore runs faster than LPJ-GUESS.25
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2.2 Stochasticity in gap models

Models relying on the gap approach including LPJ-GUESS simulate the fate of indi-
vidual trees, determined by growth and death processes and a stochastic establish-
ment, leading to demographic stochasticity. Other stochastic elements can be climatic
drivers and in particular stochastically appearing small-scale disturbances (disturbance5

stochasticity). Due to the stochasticity, individuals and vegetation biomass on each
patch develop differently and simulations of many replicate patches have to be aver-
aged to yield the forest dynamics, requiring a lot of computational time. To obtain realis-
tic results, Bugmann et al. (1996) recommended the use of 200 successive repetitions
of simulations per stand for gap models. Most commonly 50 or 100 of such replicate10

patches are used (Koca et al., 2006; Miller et al., 2008; Hickler et al., 2008, 2009;
Wramneby et al., 2008), but to save computational time, the number of patches is often
smaller (e.g. 20 in Hickler et al., 2012). In LPJ-GUESS, small-scale disturbances have
a stronger effect on species composition, forest height, age structure and biomass than
the demographic stochasticity (stochastic establishment and mortality). Demographic15

stochasticity varies the numbers of individuals in cohorts (by drawing from a Poisson
distribution in the establishment function and by imposing expected mortality rates as
probabilities for stochastic death in the mortality function) and leads only to moderate
deviations from the non-stochastic case. Small-scale disturbances, in contrast, have a
strong effect on the simulated forest dynamics. They are assumed to destroy all trees in20

a patch (Fig. 1b1–bn), i.e. after a disturbance all living biomass in that patch is removed
to the litter (dead organic matter) and growth succession starts again from the bare
ground. As a result, the total biomass (mean of all replicate patches) of a disturbance
simulation is typically smaller than in an undisturbed run (Fig. 1a).

1026

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/1021/2013/gmdd-6-1021-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/1021/2013/gmdd-6-1021-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 1021–1084, 2013

GAPPARD: a
computationally
efficient method

M. Scherstjanoi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.3 New approach to include small-scale disturbances

2.3.1 Basic assumptions

We maintain the idea that a forest consists of many patches, each of which is affected
by disturbance independently. We also maintain patch-destroying disturbances, i.e. liv-
ing biomass state variables are set to 0 by a disturbance.5

Consequently, at a given time T , the patches have different patch ages a that depend
on the times T −a, when they were affected by a disturbance, and the distribution of
patch ages P (a) at time T determines the forest state. A patch of age a has state vari-
ables (e.g. numbers per species and height class, sapwood, and heartwood mass...)
and output variables (e.g. biomass per height class). Here, we refer to both as output10

variables y(a) because each state variable can easily be treated as an output variable
and because we apply the new method in a postprocessing way.

Our approach is based on the idea that a forest does not necessarily have to be
represented by different replicate patches but can be calculated using a small number
of undisturbed simulations starting from different time points, using the information of15

the patch age distribution. This includes a temporal upscaling of the information gained
from such undisturbed, deterministic, and thus computationally efficient model runs.
We will refer to our new method as the GAPPARD method: approximating GAP model
results with a Probabilistic Approach to account for stand Replacing Disturbances.

2.3.2 Constant drivers20

If the drivers are constant (e.g. during the spin-up phase of a climate change sim-
ulation), we assume that each re-growth following a disturbance leads to the same
development of output variables as the initial forest development (Fig. 1b), i.e. y(a) =
y(x), with x the time since the start x0 of the undisturbed simulation and a the time
since the last disturbance in the disturbed simulation, i.e. patch age. In our simulations,25

we do not dynamically update several state variables that in reality would be indirectly
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affected by disturbance, including soil moisture and temperature, and the state of the
snowpack.

To have age a at a given time T , a patch of a disturbed forest first must have en-
countered a disturbance and subsequently survived a yr. Given the probability of a
disturbance pdist, the probability that a patch afterwards survives a yr without any dis-5

turbance is (1−pdist)
a. Consequently, the probability that a forest patch has age a is

P (a) = pdist (1−pdist)
a (1)

A special case is given by the patches surviving from the beginning (T = 0) to exactly
time T ; they have not encountered any disturbance, but started from bare ground (“were
killed”) for sure (pdist = 1) at time 0:10

P (T ) = 1 (1−pdist)
T (2)

The expectation value Y of simulation result y is then given by:

Y (T ) = E [y(T )] = P (T ) y(T )+
∑T−1

a=1 P (a) y(a)

= (1−pdist)
T y(T )+pdist

∑T−1
a=1 (1−pdist)

a y(a) (3)

To calculate the resulting expectation values, we first perform one simulation without15

disturbances (SWD) leading to y(x) for all time points x. Afterwards, Eq. (3) must be
applied in a postprocessing step.

The method presented here is a modified version of the von Foerster equation (von
Foerster, 1959), a general age-structured population dynamics approach, in which in-
stead of the patch age distribution the age distribution is constantly changed during the20

simulation.
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2.3.3 Changing drivers

When drivers change, disturbances occurring at different times have different impacts.
For example, under low temperature conditions, succession after a disturbance will
most probably be slower than in a warmer climate. In order to account for such transient
drivers, we modify the standard method of running only one SWD (described above)5

by running several SWDs starting at different starting times si (“nodes”), i = 0..n. This
yields different trajectories of the output variables yi (si +x), each starting at a different
starting time si with yi (si ) = 0.

For each time point T of the output, E [y(T )] is determined similarly to Eq. (3). How-
ever, in this case instead of using one undisturbed y at one time point x = a in the10

summation, the two values that belong to two subsequent trajectories starting before
and after the target time point T −a are used to describe the state of a patch with age
a (Fig. 2).

The two output values y(si +a) and y(s(i+1) +a) are then interpolated according to
the distance of T −a to the nodes si and s(i+1), so that the trajectory with the node15

closer to the target time T −a has more weight than the other one.

yinterpol(T ,a) = . . .

. . .


y0(s0 +a) ∀ T −a ≤ s0

...

y(s(i+1) +a)
(s(i+1)−(T−a)

s(i+1)−si

)
+ y(si +a)

(
1 − s(i+1)−(T−a)

s(i+1)−si

)
∀ si−1 < T −a ≤ si

y(sn +a) ∀ a > sn

(4)

Substituting Eqs. (4) into (3) yields then:

Y (T ) = (1−pdist)
T yinterpol(T ,a)+pdist

∑T−1
a=1 (1−pdist)

x yinterpol(T ,a) (5)20
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2.4 Model application and evaluation

To evaluate the GAPPARD method, we applied it to LPJ-GUESS and TreeM-LPJ (LPJ-
GUESS-G and TreeM-LPJ-G) and compared the results to the stochastic runs of LPJ-
GUESS. The stochastic LPJ-GUESS simulations served as a reference because it
is the original model that all used models are based on. For the same reason, we5

used only LPJ-GUESS to parameterize our tree species: if the parameters are valid for
LPJ-GUESS they must be also valid for LPJ-GUESS-G, TreeM-LPJ and TreeM-LPJ-
G, because they were all developed as computationally efficient upscaled versions of
LPJ-GUESS.

2.4.1 Location and climate data10

We selected the Rhone valley in the Swiss canton of Valais to test our new approach.
The floor of this valley is one of the driest regions in Switzerland, and the hillsides lead
to steep gradients in environmental conditions. In the region, management generally
did not effect the species compositions to such extends as in most Swiss regions, so we
could use recent forest data to parameterize our modeled tree species. We selected15

eight stands along a north-facing transect (Fig. 3, Table 2) that cover the vegetation
zones where homogeneous forest areas exist (from ca. 150 m above the valley bottom
to tree line). Each stand was derived from climate data points of a hundred meter grid
so that the altitudinal distances between two stands would be approximately 200 m.

Changing climate is applied after the simulation year 1900. Up to 1900 we used ran-20

domly selected values of the first 30 climate data years for the model spinup. For the
1901–1929 simulation period, we used CRU data downscaled to a hundred meter grid
(Mitchell et al., 2004). For the 1930–2006 simulation period, we used Swiss weather
station data from the Federal Office of Meteorology and Climatology MeteoSwiss in-
terpolated to a hundred meter grid by applying the Daymet method (Thornton et al.,25

1997). For the 2007–2100 simulation period, we used CRU climate data of the A1b
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climate scenario (Mitchell et al., 2004). Along with that scenario we used CO2 data that
reach 703 ppm in 2100 (IPCC, 2001, Annex II).

Based on the Soil Suitability Map of Switzerland (Frei, 1976), we chose to use a low
value of usable volumetric soil water holding capacity of 0.1 (fraction of soil layer depth)
and a value for soil thermal diffusivity at 15 % water holding capacity of 0.8 mm2 s−1.5

These values correspond to the poorly developed soils on the slopes of the Rhone
valley.

2.4.2 Tree species parameterization

Using LPJ-GUESS, we optimized the parameterization of each tree species present
in our study area to obtain the best possible fit to observed forest inventory data. We10

used LPJ-GUESS for the parameter optimization because this model served as the
reference for the subsequent model comparisons, and applied the same optimized
parameter set for all of the models we analyzed in this study. The tree species param-
eters we used are generally based on the existing LPJ-GUESS parameterizations for
plant functional types (Hickler et al., 2004; Wolf et al., 2008) and for species (Koca15

et al., 2006; Miller et al., 2008; Hickler et al., 2012). In our experiments, we used the
most abundant Swiss forest species, selected according to the species used in Lischke
et al. (2006a), and then analyzed which of them already had been parameterized for
LPJ-GUESS. We excluded all LPJ-GUESS species not present in the Swiss Alps, and
added parameterizations for three new species that are abundant in our study area:20

Larix decidua, Pinus cembra and Pinus mugo. For Larix decidua we generated an ad-
ditional function to model its leaf phenology based on results presented by Migliavacca
et al. (2008) (Appendix A2).

We further optimized the species-specific parameters used in our experiments so
that model results would best match forest inventory data from the Swiss National25

Forest Inventories NFI1 (EAFV, 1988) and NFI3 (Brändli, 2009). We selected inventory
data only from plots located south of the Rhone and within a 30 km distance of our
simulation plots, and further stratified the inventory information into eight altitudinal
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classes analogous to the altitudes of the eight simulated stands. At each altitudinal
class we calculated the mean and the standard deviation of the biomass of all living
tree species and estimated carbon mass assuming that half of a tree’s biomass is
carbon (IPCC (2003), see Appendix A1 for more details).

We used total forest carbon mass (above and belowground) as sole main metric5

for evaluating the model performance in light of the NFI data. Our aim was to opti-
mize the model parameters so that for each altitudinal class the simulated total and
main species carbon mass were similar to the NFI data. The parameters we optimized
for all species included minimum soil water content needed for establishment, mini-
mum growing degree day sum, and maximum temperature for establishment (w min,10

gdd5min e and tcmax e in Table D3 of the appendix). We further adjusted the allomet-
ric parameters for some species, in particular the steepness-influencing parameter in
diameter to height relation (k allom2 in Table D3 of the appendix). Further details on
the parameterization, especially for the tree species newly added to LPJ-GUESS, are
described in Appendix A2 and Tables D1.15

We applied one altitude-specific set of LPJ-GUESS average return intervals for
generic, patch-destroying disturbances (RID, inverse of pdist in Sect. 2.3.2). We as-
sumed that the stands along the height gradient underlie different disturbances. In gen-
eral, stands close to the valley bottom are more frequently disturbed by fire in the Valais
region (Zumbrunnen et al., 2009). Furthermore, we assumed that more uphill stands20

are disturbed more frequently by storm events, rock fall and especially avalanches.
On the one hand altitude is not a good explanatory characteristic for avalanche ap-
pearance, and Schneebeli and Meyer-Grass (1992) found that in spruce- and larch-
dominated forests steepness favors the release of avalanches, but on the other hand
a thin crown cover, big gap lengths and higher proportions of larches also increase the25

probability of avalanche release. The steepness is approximately the same for all our
simulated stands except the most upper stand, which is on slightly flatter ground. At
this highest elevation site however, shade-intolerant larch is very abundant, the trees
are exposed to avalanches from higher altitudes, the annual maximum snowpack is
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deeper and trees grow with larger gaps surrounding them. First tests with the same
RID values used for all stands, led to less precise results, especially concerning the
total modeled carbon mass (not shown). To create an altitude-specific disturbance dis-
tribution, we used either an RID value of 65 or 100 for each single stand, depending on
which value suits best to predict the total carbon mass (RID in Table 2).5

To evaluate the tree species parameterization we used two indices: the Euclidean
distance scaled to one and the percentage similarity coefficient (Bugmann, 1994). De-
tails on both indices can be found in the appendix.

2.4.3 Analyzed output variables

For our analysis, we used as investigated output variables (1) the total of the tree car-10

bon mass of a species, and (2) this variable stratified by certain height classes (of 4 m
height except the lowest being 2 m high). We examined the course of these variables
from an LPJ-GUESS simulation including small-scale disturbances and 400 replicate
patches, and compared the outcome to the results of LPJ-GUESS-G and TreeM-LPJ-
G.15

2.4.4 GAPPARD method versus stochastic LPJ-GUESS model runs

The crucial test of the GAPPARD method is its ability to reproduce the behavior of
LPJ-GUESS disturbance runs in terms of total carbon mass, species composition and
height structure. To apply the GAPPARD method, we used the RID values of the de-
fined altitude-specific disturbance distribution (RID in Table 2) and took its inverse val-20

ues for Eqs. (3) and (4). Using the new set of parameters and the altitude-specific dis-
turbances, we simulated forest growth for all eight stands with a spinup time of 800 yr
and a total simulation time of 1000 yr covering a simulation period from 1100 to 2100.

Additionally to a full time SWD (including 800 yr spinup), we used four nodes from
which we started SWDs that provide the input for the GAPPARD method to account for25

climate change: 1950, 2000, 2050 and 2080. All simulations ended with the year 2100.

1033

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/1021/2013/gmdd-6-1021-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/1021/2013/gmdd-6-1021-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
6, 1021–1084, 2013

GAPPARD: a
computationally
efficient method

M. Scherstjanoi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Without disturbance, as forests become taller the model needs to calculate light in-
terception in an increasing number of foliage layers (Prentice et al., 1993), which con-
sumes computational resources. Therefore, we increased the depth of these layers
from two to five meters after 200 yr and to ten meters after 400 yr for the full time SWD.
This change did not lead to a decline in result quality because without disturbances5

forests become homogenous in such a way that a less detailed light calculation does
not have much influence. In addition, such old forests are rather rare so that such a
simplification has an even smaller impact.

To examine the analysis, we first tracked the total carbon mass of the different
species from the end of the spinup phase until 2080. Second, we mapped the car-10

bon mass results of the different species along height classes for all stands and two
time points of simulation: 1900, and 2080. We did not analyze simulation years after
2080 because they do not represent interpolated results between two nodes but a pro-
longing of 2080 conditions (Eq. 4, case a > y(sn)). Third, to quantify the quality of the
results we calculated the root mean square error (RMSE) for each stand and each15

species, based on simulation results of a 10-yr resolution. The RMSE corresponds to
the differences in carbon mass between two models (described in detail in Appendix C),
and is calculated out of the sums of all individuals of one species reaching a certain
height class and an adjacent height class (tolerance to difference in height classes).
For every species, each of these differences enter into the calculation of the RMSE as a20

fraction of the maximum possible difference appearing in that stand and the calculated
simulation period. Hence, the maximum RMSE is one (completely different results).
We calculated the RMSEs separately for two time periods: the spinup period and the
climate change period. For both, we calculated the RMSE between LPJ-GUESS with
400 replicate patches and (1) LPJ-GUESS with 100, (2) LPJ-GUESS with 25 replicate25

patches, (3) LPJ-GUESS-G and (4) TreeM-LPJ-G.
To test the model performance we compared the simulation times of stochastic LPJ-

GUESS model runs with 400, 100 and 25 replicate patches, and TreeM-LPJ-G and
LPJ-GUESS-G. Listed times needed for the simulations using the GAPPARD method
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consider only initial runs. The computational time needed for the GAPPARD method
is negligibly short. The simulations ran on one core of an AMD Opteron 2439 2.8 GHz
processor.

3 Results

3.1 Tree species parameterization5

We successfully parameterized the LPJ-GUESS forest model using NFI data of the
Rhone valley. We achieved a high accordance between the used NFI data and the
simulated data of carbon mass for total living forest and for main species (Table 3).

Combined, the NFI1 and NFI3 data show an increase in forest biomass from the
lowest site at 800 m to middle elevations of approximately 150 tha−1 (100–265 tha−1;10

5–13.5 kgCm−2) followed further upslope by a decline in biomass to 130–170 tha−1

at the upper alpine vegetation zone (6.5–8.75 kgCm−2) (see Tables D4 and D5 in the
appendix for more details). In general, we were able to simulate these shifts, although
we rather overestimated the NFI1 data and rather underestimated the NFI3 data. Con-
sistent with the data, our simulations also show a small increase in forest carbon at all15

sites between the years in which the NFI was performed. We have reached percentage
similarity coefficients higher than 0.93 and Euclidean distances scaled to 1 of smaller
than 0.35 for the comparison of the total carbon mass over all altitudinal classes (T11
in Table 3).

With the new LPJ-GUESS parameters and functions, we were able to simulate the20

general pattern of a dominant Pinus sylvestris at stands closer to the valley bottom,
dominant Picea abies and Larix decidua in forests at a mid-altitudinal elevation, dom-
inant Pinus cembra and Larix decidua in forests at the upper alpine vegetation zone,
and a continuous decrease of the proportion of broad-leaved tree species with altitudi-
nal height (Fig. 4 and 5 and Figs. D1 and D2 in the appendix). The newly parameter-25

ized LPJ-GUESS could simulate the NFI distribution of most species with percentage
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similarity coefficient values of over 0.5 and Euclidean distances scaled to 1 of smaller
than 1.0 (Table 3). There are only two major exceptions. First, the NFI data, especially
at mid-altitudinal elevations, show high biomass of Larix decidua that LPJ-GUESS does
not capture with the parameterizations, model functions, and initial modeling conditions
we used. Concomitantly, the model generally predicts more Picea abies than is ob-5

served in the NFI data, so the sum of the carbon mass of both species leads to a good
coherence to the NFI data. Second, the modeled carbon mass of Quercus pubescence
exceeds the NFI1 values in stand (a) what is reflected in both used indices. Moreover,
although there is basically no Tilia cordata and Carpinus betulus appearing in the NFI
data, both species could establish as minor tree species in lower altitude stands in10

LPJ-GUESS.

3.2 Development of forest species composition and carbon mass with
LPJ-GUESS

The climate change scenario we applied led to several changes in all simulated stands.
Over the period from 1900 to 2000, the total carbon mass in most stands slightly in-15

creased. During the 21st century the carbon mass increased in all stands with highest
increase at the beginning of the 21st century (black solid line in Fig. 8).

At lower stands Quercus pubescens and Picea abies (stands a and b) or drought tol-
erant broad-leaved species (stands b to e) profit from a decrease of Pinus sylvestris. In
all stands, the proportion of broad-leaved species increased. Generally the increase20

of broad-leaved species was lowest on higher altitudes (<0.1 kgCm−2 in stand h),
and highest on low altitudes (approximately 1 kgCm−2 in stand a)). Like Quercus
pubescens and Pinus sylvestris, with climate change Picea abies could establish on
higher altitudes. Although no Picea abies appeared in stands (g) and (h) in 1900, in
2080 this species made approximately a third of the total carbon mass in stand (g) and25

a fifth in stand (h).
The three stochastic LPJ-GUESS model runs (using 400, 100 and 25 of repli-

cate patches) in the long term showed similar results for tree carbon mass
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development (Fig. 8). However, it is clearly illustrated, that carbon mass can vary
strongly for decades but also for centuries (in the case of 25 replicate patches). A high
number of replicate patches minimizes the chances of intensively altering output vari-
ables. However, as can be clearly seen in Fig. 8), even the results of the 400 replicates
and 100 replicates simulations are quite different. Only for periods with extreme climatic5

situations all of the three LPJ-GUESS runs were affected equally (e.g. in the beginning
of the 1920).

3.3 Development of forest species composition and carbon mass with the GAP-
PARD method

A comparison among LPJ-GUESS results using 400 replicate patches, LPJ-GUESS-10

G and TreeM-LPJ-G shows that the GAPPARD method successfully reproduces the
stochastic LPJ-GUESS simulations. The overall development of total forest carbon
mass was captured in most simulation runs of both TreeM-LPJ-G and LPJ-GUESS-
G. However, there are some shortcomings. There was a more pronounced difference
between LPJ-GUESS and TreeM-LPJ-G than between LPJ-GUESS and LPJ-GUESS-15

G (Fig. 6–7 and Fig. D3–D5 and Table D6 in the Appendix).
The total carbon mass produced with LPJ-GUESS-G was in the range of LPJ-

GUESS results for each stand and at any simulation time. TreeM-LPJ-G mostly under-
estimated the biomass (Fig. 8, and Fig. D3–D5 in the Appendix), and in most stands
only showed a small increase in total tree carbon mass or none. Both models using the20

GAPPARD method smooth the results over time so that changes of output variables
only occur gradually with the simulation years, which can be seen in total carbon mass
results and for single species.

Concerning species composition, LPJ-GUESS-G was successful in reproducing
LPJ-GUESS results. Mean RMSE values are in the range of the mean RMSE be-25

tween LPJ-GUESS using 100 and LPJ-GUESS using 400 replicate patches. The only
case where LPJ-GUESS-G produced a different species composition was in stand g).
There, Picea abies established in the middle of the 20th century in the LPJ-GUESS
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stochastic simulation run, but arrives only about a century later in the LPJ-GUESS-G
run. TreeM-LPJ showed the same discontinuity but differs also on a few more points. In
general, TreeM-LPJ-G led to a flatter distribution of carbon mass over height classes in
stands dominated by Picea abies (Fig. 6, and Figs. D6 and D7 in the appendix), while
its total carbon mass was underestimated there as well. Furthermore, all Picea abies5

dominated stands, especially stand (c) had a too large proportion of Pinus sylvestris. In
stand (a) forests consisted only of Pinus sylvestris at the beginning of the 20th century,
during the 20th century broad-leaved species could establish but not Picea abies.

A comparison of simulation times showed that both GAPPARD approaches perform
faster than LPJ-GUESS using 100 replicate patches (Table 4). With the GAPPARD10

method, TreeM-LPJ was almost four times faster and LPJ-GUESS approximately
eleven times faster than the standard LPJ-GUESS.

For the spinup period, the mean root mean square error between LPJ-GUESS
using 400 replicate patches and (1) LPJ-GUESS-G was approximately 0.1 and
(2) TreeM-LPJ-G was 0.15 (mean RMSE, calculated for species that produced at least15

0.5 kgCm−2 in one of both models). For the simulation period, the mean RMSE be-
tween LPJ-GUESS and (1) LPJ-GUESS-G was approximately 0.05 and (2) TreeM-LPJ-
G was 0.13. Reducing the numbers of replicate patches in a stochastic LPJ-GUESS
run down to 25 resulted in a mean RMSE (between the 400 and the 25 replicates sim-
ulation runs) of approximately 0.09 for the spinup period and 0.07 for the simulation20

period, and was roughly four times faster than the 100 replicates simulation (Table 4).

4 Discussion

This study identified a novel efficient method to run disturbance driven models and also
yielded an LPJ-GUESS parameterization and adaptation, and climate change simula-
tions for a region with specific properties.25
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4.1 Parameterization

For the first time the alpine mountain forest species Larix decidua, Pinus cembra and
Pinus mugo were parameterized for LPJ-GUESS. Both Pinus species could be in-
cluded using existing parameters. One main achievement is the newly added function
to model the leaf phenology of Larix decidua (see Sect. 2.4.2 and Appendix A2).5

We used observed forest biomass from inventory data as the only variable upon
which to optimize the LPJ-GUESS species-level parameters. Although this simple ap-
proach does not account for the properties influencing forest dynamics, such as tree
age, height or width, it led to a considerable similarity between the newly parameter-
ized LPJ-GUESS results and the NFI data. With the NFI data, we could use a relatively10

dense sample of plots close to the modeled stands, which makes the results highly re-
liable. Sources of error mainly concern the estimation of the biomass from the NFI data
on one side, and the comparison with LPJ-GUESS allometry based simulated values
(in all used models) on the other side. Using the LPJ-GUESS allometry function, trees
with identical diameter always have the same height and therefore the same mass.15

As a consequence, it could be possible that the model results might match the carbon
mass results of the NFI, but not the diameter at breast height. This may particularly be
the case in high mountain settings where tree allometry is strongly influenced by me-
teorologically imposed constraints (e.g. wind), which we did not consider in our models
directly. Such an inconsistency, which might vary for different species, could lead to20

an unrealistic simulation of the vertical structure of the forest, and thus to further de-
viations from observations. However, the good agreement between our simulations
and the observed biomass data indicates that differences in allometry are compen-
sated in the model, e.g., through changes in stand density controlled by disturbance.
Another source of error may be linked to the development of the forests in the used25

NFI plots. It is not clear in detail how strong the influence of the management in the
specific NFI plots is. It is also not exactly known on which stands clear-cuts or big dis-
turbance events have taken place. We assume that the mean state of all used stands
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is representative for the overall disturbance regime, so that the constant probability of
disturbance events we use can reproduce it.

Despite of all sources of error, our parameterization results show high consistency
between NFI data and simulated values. Furthermore, the simulated carbon mass and
forest species distribution in the different stands at the time of the NFI dating are plau-5

sible to a great extent.

4.2 Simulation results

Using the altitude-specific disturbance distribution and the new parameters, we were
able to simulate total forest carbon mass and a species composition that largely reflects
the NFI data. We were able to reproduce forest species composition and tree carbon10

mass without using a specific disturbance function like the LPJ-GUESS fire function
(Thonicke et al., 2001). However, to account for feedback effects between fire and forest
growth and the spreading of fire, and both especially in the context of climate change,
an appropriate modeling of the fire function is important. However, as our main concern
was to present a new modeling technique we accept approximations regarding missing15

modeling detail of disturbance types.
The few discrepancies between the simulation results and the NFI data are partly

due to uncertainties in the interpretation of the data. It is very likely that the situation
with the high carbon mass of Larix decidua and low one of Picea abies in mid-altitudinal
stands is to a high degree a result of management practices in the Rhone Valley (Gimmi20

et al., 2010). In addition, including specific total disturbance years (removal of all living
carbon mass of all replicate patches in one pre-defined year) did not lead to a signifi-
cant increase in the biomass of early successional Larix decidua because Picea abies
completely overgrew it after only 30 yr of succession (results not shown). Although this
suggests that succession may occur too quickly in LPJ-GUESS, it can be assumed25

that in the absence of forest management the real forests analyzed here at altitudes
between 1200 m and 1800 m would be strongly dominated by Picea abies (Frehner
et al., 2005). For the species Carpinus betulus and Tilia cordata the simulation results
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exceeded the NFI data, which possibly is enhanced by not modeling all here existing
broad-leaved summergreen species. It is generally known that Carpinus betulus does
not exist in this part of the Rhone Valley (Welten and Sutter, 1982), which is also re-
flected by the NFI data. In contrast, Tilia cordata usually exists in this region (Welten
and Sutter, 1982; Svejgaard Jensen, 2003), but for unknown reasons is found only on5

very few plots of the NFI data in the analyzed region.
The increase of tree carbon mass with climate change, also at the lowest site, can

mainly be explained by the 20th century increase in atmospheric CO2 concentrations
(Fischlin and Midgley, 2007). Test simulations with a constant level of CO2 led to a de-
crease in tree carbon mass in the 21st century in most plots (results not shown). This10

decrease can be traced back to a drier climate with more pronounced water stress so
that growth rates might be reduced and respiration rates increased. With rising CO2
levels this effect can be compensated, at least to a certain degree, because stomatal
regulation maintains high production rates and prevents plant water loss. In our results,
the increase of tree carbon mass is more pronounced in stands with more frequent dis-15

turbances (close to valley bottom or upper tree line). Two reasons may be responsible
for that. First, species more adapted to the new climatic conditions could profit from
opening gaps. Second, species adapted to previous climatic conditions (which sur-
vive more likely with less disturbances) could be affected negatively by the changing
conditions opening space for new species. However, at the lowest stand (ca. 800 m)20

the increase of carbon mass may be unrealistically large. Closer to the bottom of the
Rhone Valley extreme drought events causing forest diebacks are expected to occur
more frequently in the near future (Rebetez and Dobbertin, 2004). But the modeled
future carbon stock does not show the effect of such extreme events (compare with the
dry year 1921 in Fig. 8) suggesting that the climate data that we used may underesti-25

mate drought events or that the CO2-effect is too strong. In addition, the north-facing
aspect of all the sites we simulated means that they may be relatively less sensitive
to interannual climate variability than the inner-Alpine region as a whole. However, the
carbon mass of LPJ-GUESS results does not continuously increase over time, mainly
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due to stochastic variances, so that long-term trends are much more significant than
changes in carbon mass over decades. This is one reason why a quantitative analysis
of the carbon mass development between NFI1 and NFI3 is not fully reliable. However,
the limited sample size of the NFI data does not allow the strict quantitative analysis of
changes in carbon stocks.5

With climate change, the occurrence of Pinus sylvestris at stands closer to the Rhone
valley bottom will most probably be reduced and exchanged by broad-leaved drought
resistant species like Quercus pubescens (Rebetez and Dobbertin, 2004; Bigler et al.,
2006). This is well reflected in our modeling results. But it is not entirely clear why in our
simulations with LPJ-GUESS the carbon mass of Picea abies increases at the lowest10

stand, while the mass of Pinus sylvestris decreases, especially because the latter is
more drought resistant than Picea abies. We assume that the simulated decrease in
Pinus sylvestris biomass is partly because, using LPJ plant physiological functions, it
profits far less from increased CO2 levels in comparison with broad-leaved summer-
green tree species (Cheaib et al., 2012). Another reason for the decrease in Pinus15

sylvestris biomass might be that the lowest stand is still roughly 150 m above the valley
bottom, so that conditions are still good enough for Picea abies. This is also reflected
in the NFI data where the carbon mass of Picea abies at the lowest stand approxi-
mately doubled between NFI1 and NFI3 (Fig. 7, upper row). The general increase from
the NFI1 to the NFI3 biomass confirms the increase of forest biomass, although this20

change also can be due to past forest management and the prevention of disturbance
events.

It is unclear whether the modeled shift of species to higher altitudes as a conse-
quence of climate change happened in a reasonable amount of time. In all models
used here, tree establishment of new species only depends on the environment but25

does not consider changes in and feedbacks to the seed pool. It is well known that
modeling seed pools and the dispersal of seeds have a large potential to change simu-
lation results (Lischke, 2005; Lischke et al., 2006b; Epstein et al., 2007; Neilson et al.,
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2005). Incorporation of seed dispersal and migration into the models presented here
remains an open problem for future research.

4.3 GAPPARD method

We developed and successfully applied a new method to include the effect of small-
scale disturbances in a postprocessing way. We utilized a modified version of the von5

Foerster equation (see Sect. 2.3.2, Eq. 3) to account for stand-replacing disturbances
by using only undisturbed simulation runs. Furthermore, we were able to calculate out-
put variables under changing climate conditions, using a linear interpolation between
the results of selected SWDs. Several other approaches also used von Foerster types
but during the simulations for each year and without using computationally efficient10

interpolation methods (Kohyama, 1993; Moorcroft et al., 2001; Falster et al., 2010).
The GAPPARD method is clearly a step towards a computationally more efficient

modeling of forest carbon mass and species distributions. Despite this success, there
are some limitations. With the method presented here, it is currently not possible to
include any spatial interactions between neighboring grid cells or patch-to-patch inter-15

actions. Therefore, seed dispersal as applied in TreeMig or the spatial mass effect of
LPJ-GUESS (establishment in a patch depends on carbon mass of other patches in a
stand) cannot be applied so far. The stochastic mortality and establishment functions
of LPJ-GUESS seem to have a much smaller effect on forest carbon mass and species
composition than do stochastic small-scale disturbances. With a more significant im-20

pact on demographic stochasticity, LPJ-GUESS might lead to results that could not be
reproduced with the GAPPARD method as adequately as we show here. In this case,
the methods used in TreeMig (Lischke et al., 2006b) or TreeM-LPJ (Scherstjanoi et al.,
2013) to model vertical and horizontal heterogeneity could provide possible solutions.
Although it might not have an influence on the stands modeled here, one additional lim-25

itation of the GAPPARD method could be that the influence of climatic extreme events
is not visible in the model output because of the linear interpolation between differ-
ent initial undisturbed runs (see Sect. 2.3.2, Eq. 4) and because of the preset node
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positions. Thus, a central question for future applications would be the number and
setup of starting points of SWDs. Especially if a disturbance has happened before an
extreme climatic event (e.g. extreme dry years) the following succession may show
large differences to the mean calculated with our new method. Hence, nodes must be
set such that long term trends and short term variabilities are depicted. Here, we use5

pre-defined starting points for the SWDs (nodes) chosen independently from climate
data. However, this simplification concerning extreme climatic events still led to results
of acceptable quality in LPJ-GUESS-G, also because unresolved spatial heterogeneity,
e.g. microhabitats, implies that not all patches respond the same way to extreme cli-
mate variability and extreme events. Still, this simplification might be the reason for the10

underestimation of Picea abies growth in stand g). Our first SWD starts in 1950. An ad-
ditional SWD starting 1900 did not substantially change the model results (not shown).
Hence, the combination of suitable establishment conditions in one or more certain
years in the beginning of the 20th century in combination with disturbance events must
be the reason why Picea abies establishes earlier in LPJ-GUESS.15

Furthermore, it remains unclear whether a different interpolation method (e.g. spline
interpolation) between two nodes could lead to even better results. In addition, errors
may result from ignoring that some state variables are not set to 0 after a disturbance
event in stochastic LPJ-GUESS simulations (e.g. amount of litter, soil water and snow
layer) but were treated as if they were. Another source of error can be explained by20

the smaller stochastic variability in our method during the spinup phase compared to
the gap approach of LPJ-GUESS: while in LPJ-GUESS in every spinup year again the
same potential exists to randomly draw more extreme values out of the reference period
(first 30 yr of 20th century), which then can influence succession after disturbances,
with our method only conditions of the first year of the SWD are responsible for the25

establishment.
In most stands, simulations with TreeM-LPJ-G and LPJ-GUESS led to different total

biomass and different species composition. However, the original TreeM-LPJ model
does not include a gap approach and does not account for disturbance effects, and
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therefore these models should not be compared directly, and TreeM-LPJ-G should only
be compared with the standard LPJ-GUESS results. It is hard to distinguish how much
of the deviations between TreeM-LPJ-G and LPJ-GUESS originate from the GAPPARD
method and how much from the height class approximations in TreeM-LPJ. However,
we expected the model’s results to be closer to LPJ-GUESS. In contrast, we were5

surprised that the results of LPJ-GUESS-G were so close to the LPJ-GUESS results,
particularly given all the uncertainties mentioned before.

It is important to note that at the moment the new method cannot serve to track
output variables in the same way as the original LPJ-GUESS can. However, the method
presented here is not designed to model carbon or nutrient cycles. Furthermore, the10

method is best applicable if state variables that are typically reset by disturbances do
not influence the subsequent tree establishment.

5 Conclusions and outlook

With GAPPARD, we provided a new method of efficiently simulating the dynamics of
tree biomass and forest species composition. It can be used for any output variable that15

can be produced with the deterministic run and that is reset by disturbance. GAPPARD
can further be applied for any model that uses a gap approach and that applies distur-
bances as stand replacing events. Our simulations demonstrated that the GAPPARD
method can also be used for simulations that consider the transient effects of changes
in climate and atmospheric CO2 concentrations. Moreover, the principle of the method20

can be applied to newly implement the effect of stand-replacing disturbances in any
dynamic forest or vegetation model.

The GAPPARD method is particularly suitable for simulating a great number of
stands in a fast way, and hence is applicable on larger scales. The results can be
used to make first estimations about the development of output variables (e.g. species25

composition) or to identify hot spots of unusual or interesting simulation results which
than can be analyzed in more detail with the original models.
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As a next step, we plan to apply the efficient method developed here in combina-
tion with the optimized species-level parameter set for Swiss tree taxa in Swiss- and
Europe-wide simulations on a 1 km grid. Furthermore, we plan to extend the method by
implementing effects of demographic stochasticity, non-stand-replacing disturbances
and spatial interactions.5

Appendix A

Parameterization details

A1 Adaptation of NFI data

The selection of the NFI plots is based on the distance to the simulated stands, on the
stand type, and topographical considerations. We used only NFI plots that were clas-10

sified as accessible forest areas, and that are all located south of the Rhone, at most
30 km westward or eastward from the simulated stands, and at most 30 km southward
from the southernmost stand. We also classified the chosen NFI plots according to
their exposition but the results were not sensitive to it (results not shown).

The NFI1 and NFI3 data of all plots are split into two parts. One part comprehends15

trees with diameter at breast height (DBH) higher than 12 cm (older trees), the other
trees with DBH lower than 12 cm (young trees). For the older trees, the biomass per
area is estimated for each occurring species. The young trees in the NFI1 are classified
into DBH classes of 0–4 cm, 4–8 cm or 8–12 cm, or are classified as 30–130 cm high.
The young trees in the NFI3 are classified into height classes of 10–40 cm or 40–20

130 cm, or are classified as having a DBH of 0–12 cm. To estimate their biomass we
used the mean values of the classes, applied it to the LPJ-GUESS allometry function
and calculated the biomass considering wood density (Assmann, 1962).

For the parameter tuning, we utilized a set of simulation runs that all used 800 yr of
spinup period and simulated forest developments from 1900 up to the years the NFI25
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data was estimated. To widely smooth stochastic variations, we used a number of 400
replicate patches for the final parameter fine-tuning simulation runs.

A2 New plant physiological functions and parameters

We added three new tree species to LPJ-GUESS that have not been included before:
Larix decidua, Pinus cembra and Pinus mugo. Hence, we had to parameterize them5

from scratch. Both Pinus species were applicable to existing functions of LPJ-GUESS.
But first plausibility tests showed that these functions were not sufficient for Larix de-
cidua, mainly due to the tree species’ specific phenology. In LPJ-GUESS, the foliage
of summergreen species is transferred to litter all at once on one simulation day (typ-
ically in fall) when the maximum number of equivalent days with full leaf cover per10

growing season exceeds a certain value. For most species, this approximation has no
significant negative influence because photosynthetic efficiency in general is reduced
more suddenly. But especially for larches, leaf senescence can be a process lasting
for months during which photosynthetic intensity is reduced stepwise. Based on Migli-
avacca et al. (2008), we included this physiological trait by defining a new phenology15

type for Larix decidua. It will be modeled like a summergreen species, but in autumn
the phenological state of the larches will decrease with an s-shaped curve, in depen-
dency of the number of days since the start of fall of leaves (sd) and the number of
days with full leaf cover this year (md):

phen(t) =


phen(t−1)

1+e(0.15(sd−50)) ; md > 120
phen(t−1)

1+e(0.15(sd−(50+md−120
8 )))

; else
(A1)20

We determined the other parameters of Larix decidua oriented on expert knowledge
and literature about the species (Table D3). We defined it as a shade intolerant species
with a high ratio of leaf area to sapwood cross-sectional area (Oren et al., 1995). Al-
though it is a boreal species that also grows under very cold conditions, it can establish
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under warmer conditions, too. Furthermore, saplings do not need much soil water for
establishment. The parameters of the new Pinus species are mainly based on Pinus
sylvestris parameters. However, both new Pinus species are more cold resistant, have
seeds that are less drought resistant and their needles have a higher longevity. More-
over, Pinus mugo was defined as shade intolerant.5

An important issue was the parameterization of the minimum soil water content
needed for establishment (WMIN) of the three new species. Referring to Ellenberg
(1986), Bugmann (1996) defined Larix decidua as a rather drought intolerant species.
However, he also listed other authors that had defined intermediate values for it. Eil-
mann and Rigling (2012) could show that Larix decidua is, in comparison to e.g. Pi-10

nus sylvestris, strongly affected by drought events. On the other hand, Lischke et al.
(2006b) and Shuman et al. (2011) defined it as a very drought tolerant species. Yan and
Shugart (2005) used different larch species but also defined them as drought tolerant.
Matras and Pâques (2008) noted that the response of Larix decidua to drought can
vary strongly depending on stand conditions. Klimek et al. (2011) discussed the water15

consumption of Larix decidua seedlings compared to other conifers, and reported dif-
ferent observations ranging from same water uptake rates among all conifers to studies
that show that Larix decidua consumes ten times more than other conifers. If soil condi-
tions allow it, this species can survive dry years better than other species that are more
drought adapted because its root system is very deep (Anfodillo et al., 1998; Valentini20

et al., 1994). Considering all this, we determined Larix decidua having a high propor-
tion of fine roots in the deeper soil layer and a moderately low WMIN value (Table D3).
Based on Bugmann (1996) and Lischke et al. (2006b), we also used a moderately low
WMIN value for Pinus cembra and Pinus mugo. According to (Valentini et al., 1994)
Pinus cembra with its root system is also able to use groundwater from deeper layers,25

which is also in line with general knowledge. Thus, we determined a high proportion of
fine roots in the deeper soil layer for both new Pinus species.

We modified several values of the latest existing LPJ-GUESS species parameteri-
zation (Hickler et al., 2012) (Table D3). Main changes address the soil water content
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needed for establishment, which we increased for Fagus sylvatica, Abies alba and
Quercus robur, and decreased for Betula pendula and Picea abies. Furthermore, we
introduced a new shade tolerance class, particularly for Picea abies (column “ns” in
Table D1). With this, we contribute to Picea abies being less shade tolerant than Fa-
gus sylvatica or Abies alba but more shade tolerant than intermediate shade tolerant5

species (Bugmann, 1994; Roloff, 2010).
Based on the Swiss-wide applied forest models ForClim (Bugmann et al., 1997) and

TreeMig (Lischke et al., 2006b), we additionally adapted the allometry parameters. As
a result, Betula Pendula, Pinus cembra and Pinus mugo have a higher stem diameter
to tree height ratio than the other species. As another important issue, we changed the10

parameter of needed growing degree sum required for full leaf cover of Betula Pendula
and Larix decidua to account for their comparatively fast budburst (Murray et al., 1989).

Another important change concerns the parameter of maximum 20-year coldest
month mean temperature for establishment (TMAXest). This limit is not associated with
plant physiological functions, but rather represents a surrogate for functions not im-15

plemented in LPJ-GUESS that are responsible for outcompeting cold adapted species
under warmer climates. We removed this limit for all species but Pinus cembra. In a pre-
vious version, the implementation of TMAXest values of −1.5 (Miller et al., 2008; Hickler
et al., 2012) or −2 (Koca et al., 2006) for Picea abies, and of −1 (Koca et al., 2006;
Miller et al., 2008; Hickler et al., 2012) for Pinus sylvestris led to two discontinuities (re-20

sults not shown). First, both species should have been able to establish in the lowest of
the analyzed elevations (ca. 800 m), which is reflected by the NFI data. But maintaining
the limits led to a prevention of establishment of both because the climate is “too warm”.
Second, if the climate in a stand was near to the limit of the TMAXest, a species did
not grow during the spinup (1901–1930 climate) but established in the slightly colder25

1940s. Although it became much warmer afterwards the cold-adapted species, once
established, did not become extinct (despite of e.g. drought stress). This created the in-
verse picture of cold adapted species that grow better under warmer climates. A future
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application of this parameterization in regions with warmer winters might need further
tests and possibly a re-implementation of TMAXest for some species.

Similarly, WMIN covers only a part of plant physiological responses to drought. There
is a high risk that its values will be defined varying from realistic values to also cover
other plant related effects that are not included in LPJ-GUESS (e.g. plant water storage,5

plant water conduction traits, certain stomata closure effects or absence caused by
dispersal barriers). This complicated the parameterization of WMIN. In accordance
with the occurrence of species in the NFI data and Bugmann (1996) and Lischke et al.
(2006b), Picea abies and Betula pendula are more drought resistant than the WMIN
values of Hickler et al. (2012) might reflect. Consequently, we decreased the WMIN of10

Picea abies and Betula pendula. For the same reason we increased the WMIN values
of Abies alba, Quercus robur and Fagus sylvatica (Table D3).

We included C3 grass as a plant functional type into our modeling of LPJ-GUESS,
LPJ-GUESS-G and TreeM-LPJ-G without changes to the existing LPJ-GUESS func-
tions.15

We did not use a bole height to calculate the daily fraction of incoming photosyn-
thetically active radiation. In other words, leaves of all species are equally distributed
vertically. This could be a problem for the modeling of species that produce foliage high
above the ground (e.g. Pinus sylvestris), and by that might have an advantage because
they are less shaded. However, the bole height of LPJ-GUESS is still a parameter but20

should be dependent on stand density and tree age, and, thus, be treated as a state
variable, to model this issue realistically.

Appendix B

Used similarity measures for the evaluation of the parameterization

The Euclidean distance25
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ed =

√∑
(xi − yi )2 (B1)

is proportional to the sum of the squared distances of all data points. For this reason, a
lower value stands for better results. To be able to compare results of different dimen-
sions, we scaled the data of each elevation class, giving the highest of all occurring
values of one altitudinal height class the value one and normalized the other values to5

the highest value.
The percentage similarity coefficient

sc = 1−
∑

|xi − yi |∑
(xi + yi )

(B2)

is as minimum zero when the distances of the data points equals their sum, and one, if
the two data sets are equal (Bugmann, 1994).10

Appendix C

Calculation of the Root Mean Square Error

The differences in carbon mass of one species between the two model outputs to
compare (Cm1, Cm2) are summed up for each year between ystart and yend (10-yr reso-
lution), and for each height class (htcl) up to the number of height classes (nhtcl), also15

considering neighboring height classes (htcln). These differences

cm,diff =

∣∣∣∣∣∣
min(htcl+1,nhtcl)∑

htcln=max(htcl−1,1)

Cm1,htcln,yr −
min(htcl+1,nhtcl)∑

htcln=max(htcl−1,1)

Cm2,htcln,yr

∣∣∣∣∣∣ (C1)
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are scaled by the maximum carbon mass appearing in that period:

cm,max = max((Cm1,htcl,yr)+ (Cm1,htcln,yr), (Cm2,htcl,yr)+ (Cm2,htcln,yr)). (C2)

Then its square is summed up and divided by the number of elements to sum up.
The root of it is the Root Mean Square Error:

rmse =

√√√√√∑nhtcl
htcl=1

∑yend
yr=ystart

(
Cm,diff

Cm,max

)2

nhtcl yend−ystart
10

(C3)5
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landscape model for simulating spatio-temporal patterns from stand to landscape scale, Ecol.25

Model., 199, 409–420, 2006b. 1025, 1042, 1043, 1048, 1049, 1050
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Table 1. Variables appearing in the equations.

variable description

T Time in final, postprocessed results (for simplicity of notation we set initial time T0 = 0)
x Simulation time in undisturbed simulation
a Patch age
P (a) Probability that a patch has age a
y(T ) Output variable of non-disturbed simulation at time T
pdist Disturbance probability
si Node, i.e. starting point of non-disturbed simulation with changing drivers, i = 0..n
yi (si +a) State or output variable of non-disturbed simulation starting from node i with age a
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Table 2. Specific characteristics for stands a to h. Lat: Latitude in Swiss coordinates (Longitude
is 638 300 for all stands); Alt: Altitude above sea level; Temp: Mean annual temperature; Prec:
Sum of precipitation of main growing period (April–September); NFI-alt: Altitudinal range set
for NFI plots associated with the modeled stands; NFI1, NFI3: numbers of plots per altitudinal
range; RID: return intervals for generic, patch-destroying disturbances.

a b c d e f g h

Lat 127 400 127 100 126 800 126 500 126 200 125 900 125 500 124 800
Alt in m 795 1003 1214 1415 1588 1793 1990 2190
Temp in ◦C 9.5 8.5 7.3 6.2 5.3 4.3 3.2 2.1
Prec in mm 385 436 486 535 576 624 670 719

NFI- 700– 900– 1100– 1300– 1500– 1700– 1900– 2100–
alt in m 900 1100 1300 1500 1700 1900 2100 2300

NFI1 15 19 29 32 50 54 30 12
NFI3 8 14 21 14 34 24 22 6

RID 65 65 100 100 100 65 65 65
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Table 3. Evaluation of model parameterization. T1: Picea abies; T2: Larix decidua; T3: Pinus
sylvestris; T4: Pinus cembra; T5: Abies alba; T6: Pinus mugo; T7: Quercus spec.; T8: Be-
tula pubescens; T9: Fraxinus excelsior ; T10: other broad-leaved species; T11: all tree species;
NFI1: model results for simulation year 1985 compared with NFI1 data; NFI3: model results for
simulation year 2006 compared with NFI3 data; V1: Euclidean distance scaled to 1 (lower val-
ues are better), values smaller than 0.67 are written in bold. V2: percentage similarity coefficient
(higher values are better), values higher than 0.67 are written in bold.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

NFI1
V1 0.63 1.39 0.37 0.56 0.6 0.7 1.07 0.83 0.64 0.88 0.19
V2 0.78 0.5 0.8 0.66 0.72 0.69 0.05 0.71 0.69 0.65 0.96

NFI3
V1 0.76 1.37 0.51 0.59 0.53 0.74 0.67 0.86 0.72 0.85 0.34
V2 0.7 0.47 0.77 0.69 0.74 0.66 0.54 0.68 0.5 0.63 0.94
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Table 4. Simulation times and mean RMSE. Sum of simulation times of all 8 simulated stands
for 800 yr of spinup and simulation from 1900–2100 with LPJ-GUESS using replicate patches
and using the new GAPPARD method. RMSE for model spinup of 800 yr (RMSI SPI) and for the
simulation time 1900–2080 (RMSI SIM). The mean RMSE is calculated using all species that
produced at least 0.5 kgCm−2 in one of both models at any point in time during the simulation.
The reference to RMSE calculation is always LPJ-GUESS with 400 replicate patches. The
400 replicates run was done once, the others shown as means of 10 simulation runs that use
the same random number seed for stochasticity (thereby producing the same output) to account
for the different loads of the processor nodes. Simulations were run on one core of an AMD
Opteron 2439 2.8 GHz processor.

LPJ-GUESS GAPPARD

400 replicates 100 replicates 25 replicates LPJ-GUESS-G Treem-LPJ-G

simulation
times

7 h 31 min 11 s 1 h 15 min 33 s 17 min 58 s 6 min 56 s 20 min 21 s

mean RMSE
SPI

– 0.10 0.09 0.10 0.16

mean RMSE
SIM

– 0.05 0.07 0.05 0.13
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Table D1. Shade tolerance parameters. The affiliations to species are given in Table D3. st:
shade tolerant; ns: nearly shade tolerant; ist: intermediate shade tolerant; si: shade intolerant.

st ns ist si

Minimum forest-floor PAR
1.25 1.625 2 2.5

for establishment (MJ m−2 day−1)

Growth efficiency threshold
0.04 0.06 0.08 0.1

(kgC leaf m−2 yr−1)

Maximum establishment rate
0.05 0.075 0.1 0.2

(saplings m−2 yr−1)

Recruitment shape parameter
2 4 6 10

after Fulton (1991)

Annual sapwood to heartwood
0.05 0.0575 0.065 0.08

turnover rate (yr−1)
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Table D2. Climatic range parameters. The affiliations to species are shown in Table D3.

boreal temperate

Optimal temperature range
10–25 15–25

for photosynthesis (◦C)

Maximum temperature range −4–38 −2–38
for photosynthesis (◦C)
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Table D3. Specific tree parameters. b: boreal; t: temperate; st: shade tolerant; ns: nearly shade
tolerant; ist: intermediate shade tolerant; si: shade intolerant; e: evergreen; s: summergreen;
f: summergreen with fading senescence; phenramp: growing degree sum on 5 degree base
required for full leaf cover; k latosa: ratio of leaf area to sapwood cross-sectional area; rootdist u
and rootdist l: proportion of roots extending into upper and lower soil layer; chill b: changed
chilling parameter (Sykes et al., 1996); w min: minimum soil water content (averaged over
the growing season and expressed as a fraction of available water holding capacity) needed
for establishment; gdd5min: minimum growing degree day sum on 5 ◦C base, tcmax e and
tcmin e: minimum and maximum 20-yr coldest month mean temperature for establishment;
tcmin s: maximum 20-yr coldest month mean temperature for survival; k allom2: steepness-
influencing parameter in diameter to height relation: longevity and leaf longevity in year: Lar
dec: Larix decidua; Pic abi: Picea Abies; Pin cem: Pinus cembra; Pin mug: Pinus mugo; Pin
syl: Pinus sylvestris; Abi alb: Abies Alba; Bet pen: Betula pendula; Car bet: Carpinus betulus;
Cor ave: Coryllus avelanna; Fag syl: Fagus sylvatica; Fra exc: Fraxinus excelsior ; Que rob:
Quercus robur ; Que pub: Quercus pubescens; Til cor: Tilia cordata; ∗ newly added species.

Lar dec ∗ Pic abi Pin cem ∗ Pin mug ∗ Pin syl Abi alb Bet pen

climatic range b b b b b t t
shade tolerance si ns ist si ist st si
phenology type f e e e e e s
phenramp 100 – – – – – 100
k latosa 5000 4000 2000 2000 2000 4000 5000
rootdist u 0.6 0.8 0.6 0.6 0.6 0.8 0.8
rootdist l 0.4 0.2 0.4 0.4 0.4 0.2 0.2
leaf longevity 0.5 4 4 4 2 4 0.5
chill b 100 100 100 100 100 100 400
longevity 500 500 500 500 500 350 200
w min 0.3 0.35 0.3 0.3 0.25 0.4 0.3
gdd5min 300 600 300 400 600 900 700
tcmax e – – −3 – – – –
tcmin e −29 −29 −29 −29 −29 −3.5 −29
tcmin s −30 −30 −30 −30 −30 −4.5 −30
k allom2 40 40 22 30 40 40 30
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Table D3. Continued.

Car bet Cor ave Fag syl Fra exc Que rob Que pub Til cor

climatic range t t t t t t t
shade tolerance ist si st ist ist ist ist
phenology type s s s s s s s
phenramp 200 200 200 200 200 200 200
k latosa 5000 4000 5000 5000 4500 4000 5000
rootdist u 0.7 0.7 0.8 0.8 0.6 0.6 0.8
rootdist l 0.3 0.3 0.2 0.2 0.4 0.4 0.2
leaf longevity 0.5 0.5 0.5 0.5 0.5 0.5 0.5
chill b 600 400 600 100 100 100 600
longevity 350 300 500 350 500 500 350
w min 0.33 0.3 0.5 0.4 0.4 0.2 0.33
gdd5min 1200 800 1300 1100 1100 1900 1000
tcmax e – – – – – – –
tcmin e −7 −10 −2.5 −15 −15 −5 −17
tcmin s −8 −11 −3.5 −16 −16 −6 −18
k allom2 40 40 40 40 40 40 40
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Table D4. Forest biomass of the NFI1 inventory and LPJ-GUESS results for the simulation
year 1985 (all in tha−1). T1: Picea abies; T2: Larix decidua; T3: Pinus sylvestris; T4: Pinus
cembra; T5: Pinus mugo; T6: Abies alba; T7: Quercus spec.; T8: Betula pubescens; T9: Fraxi-
nus excelsior ; T10: other broad-leaved species; T11: all tree species; SIM: LPJ-GUESS results
(400 replicate patches).

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

a
NFI 11.95 15.59 63.08 0 0 0 0.24 3.79 0 8.31 103.19
SIM 12.77 1.58 74.92 0 2.61 3.42 10.6 6.85 0.68 16 129.44

b
NFI 68.62 18.83 29.59 0 6.51 1.63 0.12 4.85 2.55 6.38 139.3
SIM 48.61 3.28 34.43 0 11.28 2.02 3.06 8.27 1.74 26.62 139.31

c
NFI 91.64 95.99 19.18 0 14.27 0 0.09 3.08 1.34 19.42 245.03
SIM 118.05 5.06 17.44 1.31 33.25 1.29 3.78 7.12 2.8 26.1 216.19

d
NFI 113.89 63.11 25.49 0.38 19.14 0.24 0 4.53 0.26 2.93 232.39
SIM 173.49 12.49 5.83 1.22 20.15 1.11 0.44 7.54 0.3 8.74 231.31

e
NFI 120.49 85 16.15 2.62 3.45 2.61 0 1.01 0 0.84 232.8
SIM 217.51 25.56 2.19 0.91 0 0.9 0 1.81 0 0.29 249.18

f
NFI 72.01 106.45 5.01 14.37 0 3.3 0 0.27 0 0 201.41
SIM 139.97 35.61 1.12 2.54 0 1.94 0 0.11 0 0 181.29

g
NFI 18.54 74.72 2.16 31.9 0 6.58 0 0 0 0 133.89
SIM 15.77 61.06 0.08 56.4 0 5.22 0 0 0 0 138.53

h
NFI 0 78.9 0 50.14 0 1.69 0 0 0 0 130.73
SIM 0.69 37.15 0 97.23 0 1.62 0 0 0 0 136.69
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Table D5. Forest biomass of the NFI3 inventory and LPJ-GUESS results for the simulation
year 2006 (all in tha−1). See Table D4 for descriptions.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

a
NFI 30.59 0.78 49.87 0 0 0 6.05 12.57 0 8.33 114.86
SIM 14.95 1.14 72.14 0 3.96 2.12 15.37 8.59 0.71 19.95 138.94

b
NFI 63.84 29.21 32.8 0 10.89 0.81 2.82 3.83 5.31 17.71 167.23
SIM 47.91 2.78 32.56 0 12.31 1.53 4.35 11.54 2.07 31.7 146.76

c
NFI 65.56 148.39 20.1 0 22.56 1.12 0.48 4.02 1.06 9.6 273.08
SIM 113.01 5.87 19.34 0.43 41.06 0.92 4.52 8.51 2.88 27.36 223.91

d
NFI 66.83 97.49 26.65 0 28.7 2.1 0 5.25 0 17.81 247.29
SIM 177.44 17.54 4.85 0.73 21.12 0.71 0.78 9.26 0.52 8.85 241.79

e
NFI 130.08 101.2 20.58 2.3 7.69 0.65 0 0.64 0 1.54 265.2
SIM 227.29 29.93 1.72 0.62 0 0.62 0 2.83 0 0.67 263.67

f
NFI 74.81 169.62 0 18.58 0 0 0 0.98 0 0 266.23
SIM 147.41 44.55 1.07 2.33 0 1.42 0 1.01 0 0.01 197.82

g
NFI 28.34 89.99 0 47.21 0 4.68 0 0 0 0 170.39
SIM 23.16 79.06 0.22 59.96 0 4.81 0 0 0 0 167.21

h
NFI 0 131.13 0 44.18 0 0 0 0 0 0 179.87
SIM 0.54 57.83 0.01 97.31 0 1.92 0 0 0 0 157.6
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Table D6. Root mean square error (RMSE) between LPJ-GUESS using 400 replicate patches
and (I) TreeM-LPJ-G and (II) LPJ-GUESS-G model runs for stands a to h. All values were cal-
culated with a temporal resolution of 10 yr. spi: RMSE for simulation spinup time (800 yr); sim:
RMSE for simulation years 1900–2100; yr: only actual year difference considered; p: period
of 50 yr considered. Numbers in italic indicate that in both models less than 0.5 kgCm2 of that
species were produced at any one point during the simulation. Bold numbers indicate values
less than 0.2.
(1) Larix decidua; (2) Picea abies; (3) Pinus cembra; (4) Pinus mugo; (5) Pinus sylvestris; (6)
Abies alba; (7) Betula pendula; (8) Carpinus betulus; (9) Coryllus avelanna; (10) Fagus sylvat-
ica; (11) Fraxinus excelsior ; (12) Quercus robur ; (13) Quercus pubescens; (14) Tilia cordata.

(I)

(a) (b) (c) (d) (e) (f) (g) (h)
spi sim spi sim spi sim spi sim spi sim spi sim spi sim spi sim

1) 0.13 0.13 0.06 0.13 0.12 0.17 0.08 0.18 0.09 0.08 0.06 0.07 0.09 0.07 0.1 0.1
2) 0.36 0.21 0.13 0.1 0.17 0.16 0.17 0.14 0.23 0.23 0.23 0.26 – 0.23 – 0.14
3) – – – – – 0.11 – 0.1 0.05 0.11 0.09 0.17 0.14 0.16 0.12 0.13
4) 0.17 0.18 0.07 0.18 0.04 0.21 0.07 0.22 0.05 0.14 0.03 0.19 0.2 0.16 – 0.16
5) 0.05 0.13 0.11 0.16 0.24 0.23 0.12 0.22 0.15 0.27 0.23 0.22 – 0.13 – 0.1
6) 0.29 0.18 0.23 0.24 0.12 0.18 0.23 0.23 0.13 0.09 – 0.1 – 0.09 – 0.13
7) 0.18 0.23 0.08 0.12 0.09 0.11 0.07 0.12 0.04 0.08 0.09 0.09 – 0.07 – 0.1
8) 0.25 0.16 0.08 0.14 0.1 0.15 – 0.12 – 0.11 – 0.1 – 0.1 – 0.1
9) 0.18 0.2 0.07 0.11 0.07 0.13 0.06 0.14 0.03 0.12 – 0.09 – 0.09 – 0.1
10) – 0.18 0.18 0.19 0.1 0.21 – 0.13 – 0.1 – 0.1 – 0.11 – –
11) 0.25 0.2 0.09 0.15 0.12 0.21 – 0.12 – 0.06 – 0.1 – 0.1 – 0.1
12) 0.27 0.18 0.11 0.13 0.16 0.17 – 0.21 – 0.07 – 0.1 – 0.1 – 0.1
13) – 0.09 – 0.11 – 0.1 – 0.1 – 0.1 – – – – – –
14) 0.23 0.15 0.08 0.13 0.07 0.15 0.11 0.18 – 0.09 – 0.1 – 0.1 – 0.1

(II)

1) 0.03 0.1 0.03 0.12 0.02 0.14 0.03 0.13 0.03 0.05 0.02 0.05 0.03 0.09 0.04 0.07
2) 0.04 0.08 0.08 0.1 0.04 0.11 0.03 0.14 0.03 0.09 0.03 0.08 – 0.19 – 0.06
3) – – – – – 0.08 – 0.07 0.01 0.08 0.01 0.13 0.06 0.05 0.03 0.07
4) 0.04 0.1 0.04 0.07 0.02 0.08 0.01 0.07 0.01 0.07 0.01 0.09 0.02 0.08 – 0.25
5) 0.07 0.09 0.18 0.16 0.09 0.23 0.04 0.18 0.03 0.1 0.01 0.06 – 0.07 – 0.08
6) 0.23 0.15 0.12 0.18 0.11 0.18 0.05 0.1 0.13 0.07 – 0.1 – 0.1 – 0.11
7) 0.04 0.13 0.02 0.07 0.02 0.05 0.03 0.07 0.02 0.05 0.09 0.07 – 0.06 – 0.1
8) 0.05 0.09 0.04 0.06 0.03 0.06 – 0.05 – 0.06 – 0.1 – 0.1 – 0.1
9) 0.03 0.11 0.02 0.06 0.03 0.1 0.02 0.08 0.01 0.07 – 0.05 – 0.07 – 0.1
10) – 0.09 0.18 0.1 0.1 0.21 – 0.12 – 0.1 – 0.11 – 0.11 – –
11) 0.25 0.16 0.06 0.09 0.05 0.14 – 0.12 – 0.03 – 0.11 – 0.1 – 0.1
12) 0.27 0.14 0.11 0.09 0.06 0.09 – 0.16 – 0.03 – 0.11 – 0.1 – 0.1
13) – 0.07 – 0.05 – 0.1 – 0.1 – 0.1 – – – – – –
14) 0.05 0.1 0.03 0.06 0.04 0.08 0.04 0.12 – 0.03 – 0.09 – 0.1 – 0.1
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Fig. 1. Principle of GAPPARD. Development of any vegetation state variable (e.g. biomass of a species) y over

time t. a) solid line: average development with disturbances, dashed line: development without disturbances,

b1-bn) development of the state variable for patch 1 to n, stand-replacing disturbances appear with disturbance

probability p, c) necessary information to calculate y with the GAPPARD method at time T, for years x1 to

xT−1 the same development of y is applied.
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Fig. 1. Principle of GAPPARD. Development of any vegetation state variable (e.g. biomass of
a species) y over time t. (a) solid line: average development with disturbances, dashed line:
development without disturbances; (b1–bn) development of the state variable for patch 1 to n,
stand-replacing disturbances appear with disturbance probability p; (c) necessary information
to calculate y with the GAPPARD method at time T , for years x1 to xT−1 the same development
of y is applied.
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Fig. 2. Principle of GAPPARD applying changing drivers. a) developments of two subsequent trajectories

starting from si and s(i+1), b1), b2) weight of the trajectory on the calculation of a state variable at time point T

with age a for all T−a that are between si and s(i+1), where T is a year after si to which the output variable is

calculated and a is the patch age (time since last disturbance). A darker trajectory stands for a bigger influence.

The solid lines characterize the weight of the trajectories for T−a. Here, the trajectory starting from s(i+1) has

a higher weight because T−a is closer to s(i+1) than to si.
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Fig. 2. Principle of GAPPARD applying changing drivers. (a) developments of two subsequent
trajectories starting from si and s(i+1); (b1), (b2) weight of the trajectory on the calculation of a
state variable at time point T with age a for all T−a that are between si and s(i+1), where T is
a year after si to which the output variable is calculated and a is the patch age (time since last
disturbance). A darker trajectory stands for a bigger influence. The solid lines characterize the
weight of the trajectories for T−a. Here, the trajectory starting from s(i+1) has a higher weight
because T−a is closer to s(i+1) than to si.
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Fig. 3. Terrain around and location of the modeled stands a–h. See Table 2 for detailed values
of the stands’ altitude.
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Fig. 4. Comparison of the NFI1 data with LPJ-GUESS runs for main tree species. LPJ-GUESS results were

produced using 400 replicate patches and altitude specific disturbances (see RID in Table 2). See the lower

right chart for descriptions.
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Fig. 4. Comparison of the NFI1 data with LPJ-GUESS runs for main tree species. LPJ-GUESS
results were produced using 400 replicate patches and altitude specific disturbances (see RID
in Table 2). See the lower right chart for descriptions.
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Fig. 5. Comparison of the NFI3 data with LPJ-GUESS runs for main tree species. See Fig. 4 for description.
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Fig. 5. Comparison of the NFI3 data with LPJ-GUESS runs for main tree species. See Fig. 4
for description.
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GUESS-G (GAPPARD method used on LPJ-GUESS) and TreeM-LPJ-G (GAPPARD method used on TreeM-
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Fig. 6. Simulation results for stands a, d and h for the simulation years 1900 and 2080. Carbon
mass per tree species is plotted against tree height classes for LPJ-GUESS using 400 replicate
patches (left row), LPJ-GUESS-G (GAPPARD method used on LPJ-GUESS) and TreeM-LPJ-G
(GAPPARD method used on TreeM-LPJ). Height class 1: trees 2 m – 6 m height, height class
2: 6 m – 10 m, and so on.
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Fig. 7. Single species carbon mass with LPJ-GUESS, LPJ-GUESS-G and TreeM-LPJ-G. LPJ-GUESS: stochas-

tic simulation run using 400 replicate patches, LPJ-GUESS-G and TreeM-LPJ-G: GAPPARD applied to LPJ-

GUESS and TreeM-LPJ. Development of carbon mass until 2080. Bars indicate the NFI1 (1985) and NFI3

(2006) data. Black bar sections stand for broad-leaved species that were not modeled.
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Fig. 7. Single species carbon mass with LPJ-GUESS, LPJ-GUESS-G and TreeM-LPJ-G. LPJ-
GUESS: stochastic simulation run using 400 replicate patches, LPJ-GUESS-G and TreeM-LPJ-
G: GAPPARD applied to LPJ-GUESS and TreeM-LPJ. Development of carbon mass until 2080.
Bars indicate the NFI1 (1985) and NFI3 (2006) data. Black bar sections stand for broad-leaved
species that were not modeled.
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Fig. 8. Tree carbon mass development. Tree carbon mass from spinup time (before 1900) until
2080 with the new GAPPARD method used with TreeM-LPJ (TreeM-LPJ-G) and LPJ-GUESS
(LPJ-GUESS-G), and for LPJ-GUESS using 400, 100 and 25 replicate patches.
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Fig. D.1. Comparison of the NFI1 data with LPJ-GUESS runs. LPJ-GUESS results were produced using

400 replicate patches and altitude specific disturbances (see RID in Table 2). See the lower right chart for

descriptions.
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Fig. D1. Comparison of the NFI1 data with LPJ-GUESS runs. LPJ-GUESS results were pro-
duced using 400 replicate patches and altitude specific disturbances (see RID in Table 2). See
the lower right chart for descriptions.
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Fig. D.2. Comparison of the NFI3 data with LPJ-GUESS runs. See Fig. D.1 for description.
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Fig. D2. Comparison of the NFI3 data with LPJ-GUESS runs. See Fig. D1 for description.
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Fig. D.3. Single species carbon mass with LPJ-GUESS using 400 replicate patches. Development of carbon

mass until 2080. Bars indicate the NFI1 (1985) and NFI3 (2006) data. Black bar sections stand for broad-leaved

species that were not modeled.
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Fig. D3. Single species carbon mass with LPJ-GUESS using 400 replicate patches. Develop-
ment of carbon mass until 2080. Bars indicate the NFI1 (1985) and NFI3 (2006) data. Black bar
sections stand for broad-leaved species that were not modeled.
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Fig. D.4. Single species carbon mass with TreeM-LPJ applying the GAPPARD method. See Fig.D.3 for

descriptions.
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Fig. D4. Single species carbon mass with TreeM-LPJ applying the GAPPARD method. See
Fig. D3 for descriptions.
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Fig. D.5. Single species carbon mass with TreeM-LPJ applying the GAPPARD method. See Fig.D.3 for

descriptions.
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Fig. D5. Single species carbon mass with TreeM-LPJ applying the GAPPARD method. See
Fig. D3 for descriptions.
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Fig. D.6. Simulation results for stands a to d for the simulation years 1900, 2000 and 2080. Carbon mass

per tree species is plotted against tree height classes for LPJ-GUESS using 400 replicate patches (left row),

and using the new GAPPARD method against LPJ-GUESS (middle row) and against TreeM-LPJ (right row).

Height class 1: trees 2 m - 6 m height, height class 2: 6 m - 10 m, and so on.

52

Fig. D6. Simulation results for stands a to d for the simulation years 1900, 2000 and 2080.
Carbon mass per tree species is plotted against tree height classes for LPJ-GUESS using 400
replicate patches (left row), and using the new GAPPARD method against LPJ-GUESS (middle
row) and against TreeM-LPJ (right row). Height class 1: trees 2 m – 6 m height, height class 2:
6 m – 10 m, and so on.
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Fig. D.7. Simulation results for stands e to h for the simulation years 1900, 2000 and 2080. See Fig.D.6 for

descriptions.
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Fig. D7. Simulation results for stands e to h for the simulation years 1900, 2000 and 2080. See
Fig. D6 for descriptions.
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